A) 
Computation of Pearson Product-Moment Correlation Coefficient
 The 
scores obtained by a group of 10 children on two tests, viz.,  spelling and 
comprehension are given below :
| Name | Spelling Test (X) | Comprehension test (Y) | 
| Shanti | 31 | 7 | 
| Elango | 28 | 18 | 
| Ponnaruvi | 38 | 12 | 
| Mangaiyar | 22 | 6 | 
| Janaki | 24 | 8 | 
| Mahendra | 26 | 5 | 
| Nagajothi | 31 | 14 | 
| Arungalai | 31 | 10 | 
| Arumbu | 37 | 13 | 
| Meena | 30 | 17 | 
| Name | X | Y | x | y | x2 | y2 | xy | 
| 1 | 31 | 7 | +1 | -4 | 1 | 16 | 4 | 
| 2 | 28 | 18 | -2 | +7 | 4 | 49 | -14 | 
| 3 | 38 | 12 | +8 | +1 | 64 | 1 | 8 | 
| 4 | 22 | 6 | -8 | -5 | 64 | 25 | 40 | 
| 5 | 24 | 8 | -6 | -3 | 36 | 9 | 18 | 
| 6 | 26 | 5 | -4 | -6 | 16 | 36 | 24 | 
| 7 | 31 | 14 | +1 | +3 | 1 | 9 | 3 | 
| 8 | 33 | 10 | +3 | -1 | 9 | 1 | -3 | 
| 9 | 37 | 13 | +7 | +2 | 49 | 4 | 14 | 
| 10 | 30 | 17 | 0 | +6 | 0 | 36 | 0 | 
| å M | 300 30 | 110 11 | 0 | 0 | 244 | 186 | 86 | 
σx        
=          244/10             
=          24.40   =          
4.94
 σy        
=          186/10             
=          18.60   =          
4.31
åxy 86 86
rxy = ------------ = ------------------------ = ------------ = .40
N σx σy (10)(4.94)(4.31) 212.91
\ The Pearson product-moment correlation coefficient is
i.e., rxy = 0.40
 B) 
Computation of Rank Order Correlation Coefficient
  Two tests were 
administered to a group of 12 teacher-trainees.  The scores obtained by them 
are given below :
| Name | Maximum 40 | Maximum 40 | 
| 
 
 
 | 
 40 39 38 37 36 35 34 32 31 30 29 27 | 
 38 40 35 37 39 31 28 34 27 30 33 29 | 
Subsequently the scores obtained by them in both the tests are correlated by using the Rank order Correlation Method.
| Name | Ranks obtained | Difference (D) | 
 D2 | |
| Test-I | Test-II | |||
| 1 2 3 4 5 6 7 8 9 10 11 12 | 1 2 3 4 5 6 7 8 9 10 11 12 | 3 1 5 4 2 8 11 6 12 9 7 10 | 2 1 2 0 3 2 4 2 3 1 4 2 | 4 1 4 0 9 4 16 4 9 1 16 4 | 
| 
 | ådi2 = 72 | |||
The correlation between the ranks of the trainees is calculated through the following formula :
 
 P          
=          1   -     
  6ådi2___
 
                                       
 n-(n2-1)
= 1 - 6 x 72__ = 1 - 432__ = 1716 - 432
12 (144-1) 1716 1716
= 1284_ = 0.74825 = 0.75
 
                                    
   1716
 From 
the value obtained (P), it can be interpreted that the correlation of ranks between 
the two tests are appreciable.